Pengelompokkan Kabupaten/Kota di Provinsi Jawa Timur berdasarkan Indikator Ketenagakerjaan
DOI:
https://doi.org/10.59603/ebisman.v2i4.589Keywords:
Cluster Analysis, Complete Linkage, Hierarchy, Non-Hierarchy, EmploymentAbstract
Labor is one of the drivers of the regional economy because it can increase productivity and community welfare. Employment indicators are often used to assess the condition and dynamics of the labor market in a region, one of which is in East Java Province. To measure the condition and dynamics of the workforce in East Java Province, a grouping of districts/cities in East Java Province was carried out using the cluster analysis method. This method is used to group objects or data into groups that have similar characteristics in the observed data. This method is used by analyzing data starting from data collection, testing cluster analysis assumptions, determining methods and conducting hierarchical and non-hierarchical cluster analysis, interpreting the results of the analysis and drawing conclusions and suggestions. So the analysis that can be obtained from this study is the best hierarchical cluster method for classifying districts/cities in East Java Province is the complete linkage method with an optimum number of clusters of 4 clusters while for the non-hierarchical cluster method with the K-Means method with the best clusters of 4 clusters while for the non-hierarchical cluster method with the K-Means method with the best clusters of 3 clusters.
References
Muslihatinningsih, F., Subagiarta, I. W., & Walid, M. (2020). Penyerapan tenaga kerja di Provinsi Jawa Timur. Ekonomi Bisnis dan Akuntansi, 7(1), 1–6.
Maulidin, N. (2022). Analisis cluster dan korespondensi terhadap indikator pertumbuhan penduduk Kota Surabaya tahun 2020. JURNAL SAINS DAN SENI ITS, 11(1).
Dzikrullah, A. A. (2022). Pengelompokkan provinsi berdasarkan kualitas jaringan internet dengan metode centroid linkage. Journal of Mathematics, Computations, and Statistics, 5(1).
Subekti, F. E., & Akhsani, L. (2020). Pengembangan modul statistika deskriptif berbasis pemecahan masalah. Jurnal Program Studi Pendidikan Matematika, 9(3), 530–539.
Montgomery, D. C., & Runger, G. C. (2020). Applied statistics and probability for engineers (7th ed.). Wiley.
Yustanti, W., Rahmawati, N., & Yamasari, Y. (2020). Klastering wilayah kota/kabupaten berdasarkan data persebaran COVID-19 di Propinsi Jawa Timur dengan metode K-Means. Journal Information Engineering and Educational Technology, 4(1).
Fitriana, I. N. L. (2021). Pengelompokan provinsi di Indonesia berdasarkan indikator keluarga sehat menggunakan metode klaster hirarki dan non hirarki. Jurnal Multidisipliner Mahasiswa Pascasarjana Indonesia, 2(1), 27–36.
Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data Science, 165-193.
Sari, D. N. P., & Sukestiyarno, Y. (2021). Analisis cluster dengan metode K-Means pada persebaran kasus COVID-19 berdasarkan provinsi di Indonesia. Journal UNNES, 602–610.
Faelassuffa, A., & Yuliani, E. (2021). Kajian tingkat partisipasi angkatan kerja terhadap indeks pembangunan manusia. Jurnal Kajian Ruang, 1(1).
Husada, A. P., & Yuhan, R. J. (2022). Direct dan indirect effect: Determinan upah minimum kabupaten/kota di Jawa Barat. Jurnal Ekonomi dan Pembangunan Indonesia, 2(1), 98–116.
Saputri, N. A. A., Ismanto, B., & Santoso, T. N. B. (2022). Pengaruh angkatan kerja, angka melek huruf, dan angka putus sekolah dalam disparitas anggaran pendidikan. Jurnal Samudra Ekonomi dan Bisnis, 13(2).
Safira, N., & Wibowo, Y. H. (2021). Angka partisipasi kasar dan angka partisipasi murni sebagai indikator keberhasilan pendidikan Indonesia. Jurnal PAKAR Pendidikan, 19(2), 101–115.
Siskawati, N., Surya, R. Z., & Sudeska, E. (2021). Pengaruh harapan lama sekolah, rata-rata lama sekolah terhadap tingkat pengangguran terbuka di kabupaten/kota provinsi Riau. Jurnal Ilmiah Badan Perencanaan Pembangunan Daerah Kabupaten Indragiri Hilir, 7(3).
Kevin, A. V., Bhinadi, A., & Syari'udin, A. (2022). Pengaruh PDRB, angka harapan hidup, dan rata-rata lama sekolah terhadap kemiskinan di kabupaten/kota provinsi Jawa Tengah tahun 2013–2021. Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, dan Pendidikan, 1(12).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 EBISMAN : eBisnis Manajemen
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.